
Trust and Helpfulness in Amazon Reviews: Final Report

Dylan Shinzaki, Kate Stuckman, Robert Yates

December 10, 2013

Abstract

On Amazon, many purchase reviews are dishonest spam entries written to skew product
ratings [1]. Though users have the opportunity to rate reviews as helpful or unhelpful, socio-
logical factors and prior ratings influence users to rate these reviews for reasons other than the
truth of their content [2, 3]. Many studies have evaluated the content of these user reviews to
detect spam entries by mining and classifying the text entry. However, [4] proposes a graph
based algorithm to determine the honesty of reviews and trustworthiness of the reviewer for
general product review data. In this project, we propose to apply this algorithm to Amazon
review data and compare helpfulness data to the resulting quantitative assessments of honesty
of reviews and trustworthiness of reviewers. Finally, we analyze the trust of the reviewers and
their correlation with helpfulness in order to classify spam.

1 Background

Internet networks increasingly support the ability for users to express opinions and publicly evaluate
website content. These types of user evaluations can be split into two groups: direct evaluation
and indirect evaluation. In a direct evaluation scheme, users rate or express opinions about other
users. For example, [5] discusses the process of Wikipedia admin elections in which admins vote
on prospective admits either in support or opposition. In an indirect evaluation scheme, users rate
or express opinions about user-generated content, such as a ”Like” on a Facebook post.

The large, accessible, and sometimes anonymous nature of such social networks creates an
opportunity for malicious users as it is often difficult to identify and punish the negative behavior.
As a result, much research has been devoted to approaches used to determine whether a user is
trustworthy, often based upon previous content and behavior. A notable example of this is the
Eigentrust algorithm [6]. The algorithm is motivated by peer-to-peer file sharing networks in which
malicious users could send programs such as viruses. The risk associated with such files creates
the need to establish a peer’s credibility. To establish the trustworthiness of user i, the algorithm
uses direct evaluations from other users who have downloaded or uploaded from user i and creates
a numerical value related to the probability that user i is malicious.

A similiar approach was proposed in [4]. [4] introduces a novel approach based upon a graph
model of the reviewers, reviews, and products with the intent of identifying spammers. This algo-
rithm is based upon a node reinforcement method that has been used in situations with conflicting
information sources [7]. Like [6], this algorithm assigns a numerical value related the credibility of
a given user and review based upon repeated iteration until convergence.

With the increasing popularity of online shopping, sites such as Amazon increasingly support
the ability for users to both rate and review products that they purchase. Such a system creates

1



Term Description Symbol

Trustiness Tendency of a user to supply honest reviews T

Honesty Tendency of a review agree with other honest reviews H

Reliability Tendency of a product to get good scores from users with high trustiness R

Agreement Tendency of a review to match other honest reviews A

Figure 1: Terminology from [4]

the opportunity for malicious users to post en-mass falsified reviews with the intent of influencing
the opinion of potential buyers. This is a practice called review spam. In fact, [8] demonstrated
that about 10% of reviews were influenced by review spam.

In a review of the field, [9] argues that one key tools of these fields include machine learning
methods and natural language processing. The review spam detection approaches proposed by
[10, 1, 11] are consistent with that description.

An implemented approach to fighting spam review and identifying reviewer trustworthiness is
the Amazon helpfulness metric. Each review asks “Was this review helpful?” in the hope that
users will vote truthful reviews more helpful. The actual dynamics of public opinion in these types
of systems is much more complicated. [2] used the Amazon helpfulness measure as a case study.
The results of this testing indicated that a review is likely to be rated more helpful if it is close to
the mean and the variance is low. It also proposed other factors which may make a review helpful
such grammatical correctness.

This paper is organized as follows. Section 2 explains the implementation of the algorithm.
Section 3 discusses the dataset used for this project and preliminary analysis on it. Section 4
describes the methods used to evaluate the accuracy of the algorithm output. Section 5 describes
compares and contrasts the algorithm output with the Amazon helpfulness metric. Section 6
proposes an extension to the algorithm which approximates the solution while using less space and
time.

2 Algorithm Description

Adopting the terminology of [4], we wish to quantify the trustiness of the reviewers, the honesty of
the reviews, and the reliability of the products, given the a set of reviewers, review scores, and the
products that they review. Let review honesty be defined from -1.0 (dishonest) and 1.0 (honest), let
reviewer trust be defined from -1.0 (untrustworthy) and 1.0 (trustworthy), and let item reliability
be defined from -1.0 (bad item) and 1.0 (good item). A summary of this terminology is given in
Figure 1.

The set of reviewers, reviews, and products are interpreted in a graph structure called a “review
graph”, shown in Figure 2. There is a node for each reviewer, each review, and each product. The
topology of the graph is such that each reviewer node connects with one or more review nodes and
each review node connects to exactly one product node.

The trustiness, reliability and honesty of each user, product and review is calculated though
iterative update. Each value is initially set to 1 and iteratively updated using a set of equations
which interdependently relate user trustiness, review honesty, and product reliability. [4] provides
a justification for the choice of these functions and a full description is rather lengthy. An example
is the calculation of trustiness of a given user, r shown in Equation 1 where Hr is the sum of the

2



Figure 2: An example of the review graph structure [4]

honesty scores of over all of r’s reviews. This equation has the intuitive properties that honest
reviews increase the user’s trustiness. Note that this equation depends not on the number of
reviews, but the sum of honesty values.

T (r) =
2

1 + e−Hr
− 1 (1)

The update of all the equations is repeated until convergence is achieved. The pseudo-code is
given in Algorithm 1 in the Appendix.

For initial testing, we ran our algorithm on test data with 3 products, 8 users, and 20 reviews.
This included 2 spam users who had review scores that deviated significantly from the average for
most reviews. This modeled a situation in which the spammer benefited from falsely promoting a
bad product. The algorithm correctly detected 2 spam users. The reviewer trust was between 0.6
and 0.9 for the good users and between -0.7 and -0.8 for the spam users.

3 Dataset Analysis

The dataset to be used for this task is the “Web data: Amazon reviews” dataset available via the
course website. We focused on a particular dataset used in [12] which is referred to as the “Fine
Foods” dataset. It contains 568,454 reviews from 256,059 users. Each review has a number of
positive ratings and negative ratings. The overall “helpfulness” of a user may be affected by the
number of reviews they authored.

3.1 Method 1

A review with helpfulness 2/2 may not be as reliable as a review with helpfulness 23/25. Therefore,
in Method 1, a user’s helpfulness will be calculated as a weighted average: a user with 2 reviews of
ratings 0/2 and 95/100 will receive a helpfulness rating of 95/102, ensuring that ratings with more
votes are weighted more heavily. This relation is plotted in Figure 3.

3



Figure 3: Number of Reviews vs. Net helpfulness

The trends of users authoring more that 20 reviews is interesting. Though these users are
outliers in the data, they consistently tend towards very high helpfulness ratings. The left-hand
side of this plot indicates that the average Amazon user writes a small number of reviews. This
frequency distribution of authored reviews was investigated and plotted in Figure 4. This figure
plots the number of reviews written by a user, and the corresponding frequency of users that
authored that number of reviews. As suspected, most Amazon users wrote a very small number
of reviews, with 72% of users authoring only a single review. This plot also illustrates that this
frequency of review authorship clearly follows a power law distribution.

3.2 Method 2

We can analyze how this helpfulness metric varies with the total number of votes, as shown in
Figure 5. Most users that have received a very high number of votes are still achieving very high
helpfulness ratings, as if there are “expert” reviewers that are consistently reviewing products well.
This plot also shows that there are outliers with a large number of negative votes. For instance,
there is one user in the plot who, over all products, was found helpful by 0/103 people. Sampling
these consistently “unhelpful” reviewers could prove helpful in spam detection. This plot also
indicates that users with a low number of total votes are still achieving these perfect helpfulness
rating, exposing an issue with our helpfulness metric when analyzing more typical Amazon users.

Based on this, we propose an alternative method for measuring user helpfulness. A single
review’s helpfulness score of 95/100 represents 95 helpful votes and 5 unhelpful votes. In Method
2, a user’s helpfulness is calculated as the sum of the positive helpfulness votes minus the sum of
the unhelpful votes over all of a user’s reviews. So in our previous example, a user with ratings 0/2

4



Figure 4: Number of Reviews vs. Number of Users who have done that many reviews

Figure 5: Weighted helpfulness vs. total helpfulness

5



Figure 6: Number of Reviews vs. Alternative helpfulness

and 95/100 would be rated 95 - 7 = 88. Conversely, a user with ratings 2/2 and 5/100 would be
rated 7 - 97 = -90. This places our “typical” Amazon users on more neutral ground, where ratings
of 1/1 = 1 are a more central score. This is plotted in Figure 6.

In contrast to Figure 3, Figure 6 shows that the use of Method 2 causes most users to achieve
smaller ratings centered around zero (with the exception of some outliers). Here we achieve the
desired quality where most users are achieving an average helpfulness metric, not an outstanding
helpfulness metric. The problem of helpfulness scores for users with a low number of reviews written
and ratings received is solved.

4 Algorithm Evaluation

One difficulty of evaluating the algorithm is that we do not know beforehand which users are
spammers and which are legitimate reviewers. This makes it difficult to evaluate whether the user
trustiness values are correct in the sense that they assign low trustiness values to spammers and
high trustiness values to legitimate users.

Our approach is to insert additional reviews into the dataset. The reviews are constructed to
be from new, known users and to model expected behaviors of certain types of users. The scores of
these users can be easily extracted from the final output. We chose to implement 4 basic models
of user behavior, which are described in Table 7. More specifically, N users are inserted. For each
user, M items are chosen uniformly at random and a review is generated for that user with a score
based upon the selected model. The modified dataset is then run through the algorithm.

This approach has many weaknesses. For example, the modeled behaviors are very simple.

6



Model Description

Downvote Bot Always review 1.0

Upvote Bot Always reviews 5.0

Conformist Always reviews the average score

Random Reviews with score taken uniformly at random from 1.0 to 5.0 inclusive

Figure 7: User types modeled for evalution

Model Average Standard deviation Median

Downvote Bot -0.768 .381 -.094

Upvote Bot 0.941 0.096 0.073

Conformist 0.946 0.053 0.942

Random -0.334 0.603 -0.613

Figure 8: Evaluation results for N = 20 and M = 10

Additionally, the set of chosen items is a preset size and populated at random. In practice, we
might expect spammers to target certain items based upon underlying motivations. However, it
provides a good baseline.

We chose N = 20 and M = 10. The results of this evaluation are chosen in Table 8. The results
for the Downvote Bot and the Conformist make sense. The Downvote Bot gets a low score and
the Conformist gets a high score. The Random and Upvote Bot models have results which do not
seem to match our expectations. The Upvote Bot has a high trustiness and the Random trustiness
is not near zero. This can partly be explained by the dataset. Table 9 indicates the breakdown of
review scores for the Amazon Fine Foods dataset. The majority of reviews assign a score of 5.0,
the highest score. This phenomenon can be seen in the other Amazon datasets. The reasons for
this may be the result of self-selection as only enthusiastic users could be expected put in the extra
effort of writing an online review. With this in mind, the results for the Upvote Bot and Random
model make more sense. The Upvote bot almost always agrees with legitimate users, making it
seem like a legitimate user itself. The Random model selected scores uniformly at random. While
it sometimes agrees with the majority of users who vote 5.0, it often does not. This explains the
Random models slightly negative score with a very large standard deviation.

This highlights a weakness in the implemented algorithm. A reputation based approach in
the context of review score means that certain spammers can appear legitimate if they match the
existing opinions of the majority of legitimate users. Additionally, this analysis assumes a potential
spammer generates many reviews from the same account. A malicious user could subvert the above
algorithm by spamming using a large number of single review spam accounts. While generating
spam, such accounts would be indistinguishable from valid, new users. Other approaches, such as
CAPTCHA, would be needed to compliment reputation based spam detection.

Score 1.0 2.0 3.0 4.0 5.0

Count 51691 29430 42090 79428 357730

Percentage 9.22% 5.25% 7.51% 14.2% 63.8%

Figure 9: Score breakdown for Fine Foods dataset

7



Figure 10: Helpfulness vs. Trustworthiness (Method 1)

5 Relating Helpfulness and Trustworthiness

After implementing the algorithm, the two methods of helpfulness were further evaluated. Figure
10 shows a user’s helpfulness (calculated using Method 1) vs. trustworthiness. Note that the data
was filtered to include only users with 20 or more reviews. Figure 10 illustrates that the relationship
between helpfulness (Method 1) and trustworthiness is weak, wish a correlation value of 0.2414.
This figure also indicates trustworthiness has a heavy distribution of 1s and -1s.

Figure 11 shows the relationship between helpfulness (calculated using Method 2) and trustwor-
thiness. Perhaps surprisingly, the helpfulness metric calculated by method 2 is even more weakly
tied to trustworthiness than that using Method 1, with a correlation value of 0.0676.

These weak correlations for both helpfulness methods indicate that factors beyond a review’s
star rating alone dictate whether a user finds it helpful. For instance, it is likely that Amazon users
consider the textual content of a review, even if the review’s star rating differs heavily from the
average. Also, as indicated in background readings, users often conform to the masses when rating
reviews.

With this said, the Method 2 helpfulness may provide useful insight in spam detection. Recall
that the goal of method 2 was to consider most users as “average” reviewers with helpfulness
ratings centered around zero. If we consider the practical applications of this metric, say to reward
exceptional users or catch spammers, we are only concerned with outlier helpfulness scores. 88%
of users with a helpfulness less than -100 had a trustworthiness less than -.9. 90% of users with
a helpfulness greater than 100 had a trustworthiness greater than .9. Furthermore, 100% of users
with a helpfulness less than -200 had a trustworthiness less than -.9. 92% of users with a helpfulness
greater than 200 had a trustworthiness greater than .9. This method of considering helpfulness and

8



Figure 11: Helpfulness vs. Trustworthiness (Method 2)

trustworthiness suggests that outlier values of helpfulness calculation using method 2 could act as
a way to identify potential spammers.

6 Algorithm Changes

Size is a major consideration when doing calculations on this type of graph. We propose a method
to produce an approximation of the trustiness, honesty, and reliability values with the consideration
of limited space and computation time.

In Figure 4, we see that the distribution of user’s review amounts approximately obeys a power
law and the majority of users review once or twice. Users who review a small number of times
generally have a neutral trustiness value (near 0) and thus have limited effect on the rest of the
network. We propose an approximation scheme which modifies the graph to remove certain users
(and their reviews) to save space. Since the algorithm run-time is linear in the number of users
and reviews, we’d expect to also have a proportional effect on computation time.

Each user node is removed with probability p(d) where d is the degree of that user node and
p is a given function which returns a value from (0, 1). Then, the original algorithm is run on
the modified graph. We will focus on a specialization of this is an algorithm that we will call the
k-approximation algorithm. A tunable value k is selected and p(d) is given by:

p(d) =

{
0 d ≤ k
1 d > k

This corresponds to ignoring users who have written less than k reviews by always assigning

9



them a trustiness of 0. As shown in Figure 4, relatively small values of k could significantly reduce
the size of the graph. Note that the case of k = 0 corresponds to the original algorithm.

The optimal value of k would depend on the specific topology of the graph. An important
metric is the trade off between space and time saved and the error caused by the approximation.
Let xk denote a vector of user trustiness values when the algorithm is run with an approximation
value of k. Note that if a user is ignored due to the value of k, this corresponds to a trustiness of 0.
A possible measure of the error is weighted Euclidean distance between the results of the original
algorithm of the k-approximation, e(k). This is shown in Equation 2 where N indicates the number
of users, xk(i) indicates the trustiness of the ith user with value of k, and wi indicates the weight
associated with that user.

e(k) =

√√√√ N∑
i=0

wi(x0(i)− xk(i))2 (2)

One approach is to weight each user equally as in Equation 3.

wi =
1

N
(3)

Alternatively, we can weight users in proportion to the number of reviews they have done. This is
based upon the observation that our algorithm is more interested with users who have done more
reviews. This is shown in Figure 4 with ci indicating the number of reviews that user i has done.

wi =
ci∑N
j=0 cj

(4)

The error for both of these cases are plotted in Figure 12 and 13. They show the expect relationship
that increasing K increases the error. Additionally, we would like to characterize the amount of
time and space that is saved as a result of this approximation. Normalized values for the time,
number of reviews, and number of users vs. K is plotted in Figure 14. The values are normalized
by the corresponding value in the original algorithm. This means all values for the case of k = 0
are 1. Additionally, the case k = 1 took about 80% of the time compared to the case of k = 0.

In general, it is difficult to discuss what is the optimal value of k to balance the trade-off
between error and efficiency. The exact application will dictate what level of error is acceptable.
Additionally, the time savings and error associated with this approach are heavily dependent on
the topology of the graph. However, the above described approach provides a powerful tool for
when one is primarily interested in high-degree users.

7 Conclusion

In this report, we discussed and implemented an algorithm to assign numerical values of trust
to users reviewing items in an online shopping website. This algorithm was applied to a dataset
taken from Amazon.com. The algorithm confirmed out expectations when fed with researcher
generated users with certain models of behavior. However, this accuracy was limited by the uneven
distribution of Amazon review scores. By analyzing Amazon review helpfulness, two metrics were
created to calculate a user’s overall helpfulness. Relating these metrics to the trustworthiness given
by the algorithm showed how user helpfulness could be used to identify trusted and untrusted
users in the case of outliers: users with very high or very low helpfulness ratings. Additionally, we

10



Figure 12: Unweighted error vs. K

Figure 13: Weighted error vs. K

11



Figure 14: Problem size vs. K

implemented an approximation algorithm which calculated the trust scores with reduced time and
space requirements and limited loss in accuracy

A key challenge of this project was the distribution of scores in the dataset, as most of the
scores were 5.0. This may not be the case in all review graph and merits future work. Additionally,
extensions to this algorithm would incorporate data such as helpfulness or text in calculating trust.
Manually tagged spammers could provide more convincing validation of the algorithm’s ability to
differentiate trusted and untrusted users.

12



References

[1] E.-P. Lim, V.-A. Nguyen, N. Jindal, B. Liu, and H. W. Lauw, “Detecting product review
spammers using rating behaviors,” in Proceedings of the 19th ACM international conference
on Information and knowledge management, pp. 939–948, ACM, 2010.

[2] C. Danescu-Niculescu-Mizil, G. Kossinets, J. Kleinberg, and L. Lee, “How opinions are received
by online communities: a case study on Amazon.com helpfulness votes,” in Proceedings of the
18th international conference on World wide web, pp. 141–150, ACM, 2009.

[3] L. Muchnik, S. Aral, and S. J. Taylor, “Social influence bias: A randomized experiment,”
Science, vol. 341, pp. 647–51, 2013.

[4] G. Wang, S. Xie, B. Liu, and P. S. Yu, “Review graph based online store review spammer
detection,” in Data Mining (ICDM), 2011 IEEE 11th International Conference on, pp. 1242–
1247, IEEE, 2011.

[5] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, “Governance in social media: A case
study of the wikipedia promotion process.,” in ICWSM, 2010.

[6] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for reputation
management in p2p networks,” in Proceedings of the 12th international conference on World
Wide Web, pp. 640–651, ACM, 2003.

[7] X. Yin, J. Han, and P. S. Yu, “Truth discovery with multiple conflicting information providers
on the web,” Knowledge and Data Engineering, IEEE Transactions on, vol. 20, no. 6, pp. 796–
808, 2008.

[8] E. Gilbert and K. Karahalios, “Understanding deja reviewers,” in Proceedings of the 2010
ACM conference on Computer supported cooperative work, pp. 225–228, ACM, 2010.

[9] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations and trends in
information retrieval, vol. 2, no. 1-2, pp. 1–135, 2008.

[10] N. Jindal and B. Liu, “Review spam detection,” in Proceedings of the 16th international con-
ference on World Wide Web, pp. 1189–1190, ACM, 2007.

[11] F. Li, M. Huang, Y. Yang, and X. Zhu, “Learning to identify review spam,” in Proceedings
of the Twenty-Second international joint conference on Artificial Intelligence-Volume Volume
Three, pp. 2488–2493, AAAI Press, 2011.

[12] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs: modeling the evolution of user
expertise through online reviews,” in Proceedings of the 22nd international conference on World
Wide Web, pp. 897–908, International World Wide Web Conferences Steering Committee,
2013.

13



8 Appendix

Algorithm 1 Calculate trustiness, honesty, and reliability

Require: ∆t, δ, maxRound to be user defined
Input: Items I, reviews RE, and reviewers Ri.
Output: Reliability R, honesty H, and trustiness T .
round = 0
Assign all values in H, T, R, A to be 1
while round < maxRound do

for re ∈ RE do
// Update honesty for each review
compute H(re) using equations described in the paper

end for
for r ∈ Ri do

// Update trustiness of each user
compute T(r) using given equations described in the pape

end for
for i ∈ I do

// Update reliability of each item
compute R(i) using equations described in the paper

end for
for re ∈ RE do

// Update how much each review agrees with other honest reviews
compute A(re) using given equations described in the pape

end for
round++

end while
Output: R, H, T

14


